Reg. No.

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI – 628 502.

UG DEGREE END SEMESTER EXAMINATIONS - NOVEMBER 2024.

(For those admitted in June 2021 and later)

PROGRAMME AND BRANCH: B.Sc., CHEMISTRY

SEM	C	ATEGO	RY	Y COMPONENT		COURSE CODE		COURSE TITLE		
VI	I	PART -I	II	II CORE		U21CH612		PHYSICAL CHEMISTRY - IV		
Date	& Sessi	i on:15 .	11.2024 / AN T			ime : 3 hours		Max	kimum: 75 Marks	
Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – A (</u> 10 X 1 = 10 Marks) Answer <u>ALL</u> Questions.							
CO1	K1	1.	For w a) (-	n the nu b) 1	umber of ph	ases at the c) 2	triple point	is. d) 3	
CO1	K2	2.						ng rea tic	ction up on cooling. d) Peritectic	
CO2	K1	3.		cells are m nductors		erconducto	rs c) Semio	conductors	d) Non-conductors	
CO2	K2	4.	Whic a) Si	h of the foll	owing n b) Au		d to make s c) Pt	olar cells.	d) Ag	
CO3	K1	5.	a) Fu	h one is not inctional gr cometrical is	oup	c	b) Conjuga	ation		
CO3	K2	6.	absorb IR radiation.a) Homonuclear diatomic moleculec) Both a and bb) Heteronuclear diatomic moleculesd) Monoatomic molecules							
CO4	K1	7.	The c a) 0.		ift value b) 1.3	e of methyl	proton in N c) 1.5	MR is	 d) 2.5	
CO4	K2	8.	a) IR			ed in ESR s io		7.	d) Microwave	
CO5	K1	9.	Predi a) 1		ny type: b) 2	s of symme	try element c) 3	s are there?	d) 4	
CO5	K2	10.	a) It ł	O molecule nas no symi nas no C2 s	metry		b) It has	C2 symmet ss C2 as wel		
Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – B (</u> 5 X 5 = 25 Marks) Answer <u>ALL</u> Questions choosing either (a) or (b)							
CO1	K3	11a.	Write	the statem	ent of p	hase rule.	Write its de (OR)	rivation.		
CO1	K3	11b.	State	distribution	n law ar	nd give its a	• •	÷.		
CO2	K3	12a.	What	is meant b	y solar :	radiation? I	Discuss abo (OR)	out the prin	cipal of solar cell.	
CO2	K3	12b.	Write	the applica	ations of	f solar cells	• •			

CO3	K4	13a.	Illustrate Born-Oppenheimer approximation. (OR)
CO3	K4	13b.	Comment on the importance of finger print region.
CO4	K4	14a.	Compare stokes and anti-stokes lines. (OR)
CO4	K4	14b.	Analyse the factors affecting chemical shift in NMR spectrum.
CO5	K5	15a.	Construct the group multiplication table for NH ₃ molecule. (OR)
CO5	K5	15b.	Justify the following statement. All cyclic groups are Abelian but every abelian group is not cyclic.

Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – C (</u> 5 X 8 = 40 Marks) Answer <u>ALL</u> Questions choosing either (a) or (b)
CO1	K3	16a.	Give the neat sketch of the phase diagram of water system with explanations. (OR)
CO1	K3	16b.	What is simple eutectic system? Give any one example with explanation.
CO2	K4	17a.	Categorize different types of solar cells. (OR)
CO2	K4	17b.	Illustrate the design, fabrication and power conversion efficiency of DSSC.
CO3	K4	18a.	Examine the theory, selection rules for electronic spectra and any two applications of UV-Visible spectroscopy. (OR)
CO3	K4	18b.	Conclude the applications of IR spectroscopy.
CO4	K5	19a.	Interpret the principal and applications of Raman spectroscopy. (OR)
CO4	K5	19b.	Comment about molecular peak, base peak, isotopic peak and meta stable peak in mass spectroscopy.
CO5	K5	20a.	Interpret the symmetry operations and symmetry elements with suitable examples. (OR)
CO5	K5	20b.	Predict the point group of H_2O molecule and construct the group multiplication table.